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An Improved Modal Expansion Method for ‘Ilvo Cascaded

Junctions and Its Application to Waveguide Filters

Zhongxiang Shen and Robert H. MacPhie

Abstract-An improved modal expansion method is described for the

scattering matrix of a cascaded network which consists of an enlargement
junction combined with a reduction junction. The new method can signif-

icantly reduce computation time and requirement of computer memory.
Application to iris coupled waveguide cavity filters is demonstrated.

Numerical remdts for a rectangular waveguide cavity filter are given.

I. INTRODUCTION

The problem of electromagnetic scattering at waveguide disconti-

nuities has been extensively studied for several decades. Of the many

methods developed for this problem, the most rigorous is the modal

expansion method [1 ]–[3]. In order to analyze multistep waveguide

discontinuities by the modal expansion method, the generalized

scattering matrix technique (GSMT) [4] is often employed to obtain

the overall scattering matrix of the whole circuit. Due to the fact that

the GSMT is computationally time-consuming, some improvements

have been presented. Omar and Schunemann [5] demonstrated that

the transmission matrix representation of waveguide discontinuities is

superior to the scattering matrix representation. However, as shown

by Mansonr and MacPhie [6], the transmission matrix formulation

requires an equal number of modes to be retained in any of the

guides forming the discontinuities, which may result in incorrect

numerical solutions. An improved transmission matrix formulation

was then presented in [6], but it becomes inaccurate when two abrupt

discontinuities (one enlargement and the other reduction) are in close

proximity,

This paper presents an alternative, improved modal expansion

method for cascaded waveguide junctions. The basic idea is to

consider the two junctions at once by the modal expansion method

[1]-[3], which directly yields the scattering matrix of the whole

cascaded network. This improved scattering matrix formulation is

formally exact and completely eliminates the numerical overflow

problem [5] from which the transmission matrix formulation suffers

and can avoid the inversion of two large matrices. Considerations of

the properties of the junctions at the incident and transmitted ports

of a practical filter lead to a matrix-partitioning technique to greatly

reduce computation time and memory space requirement. Numerical

tests show that the technique is very computationally effective and

stable.

IL IMPROVED MODAL EXPANSION METHOD

Fig. 1 shows the structure of the scattering problem considered in

this section; there are two waveguide junctions (one is enlargement

and the other is reduction). The length of the sandwiched larger

waveguide (guide 2 in Fig. 1) is assumed to be 1. The traditional

approach is to separately analyze these two individual junctions (A

and B in Fig. 1) and then to obtain the overall scattering matrix of the

cascaded network by the GSMT [4]. Instead, one can consider these
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two junctions at once. As shown in Fig. 1, a+ and a– are the incident

and reflected modal amplitude column vectors in guide 1 at Junction

A, and similarly c+ and c– are the incident and reflected modal

amplitude vectors in guide 3 at Junction B, and b+, b–, d+, and d–

are similarly defined in guide 2 for junctions A and B. Application

of the boundary conditions for tangential electric and magnetic fields

at the interface of Junction A yields [3], [7]

b++ b- =~l(a+ +a-) (1)

Y1 (a+ – a–) = M~Y~(b– –- b+) (2)

where Yi, for i = 1, 2, and 3, is the modal admittance matrix for the

ith wavegnide. The superscript T denotes the transpose operation and

Ml is the J3-field mode-matching matrix of Junction A [7]. whose

size is of Nz by N1, where ~1 and Nz are the numbers of modes

considered in guide 1 and guide 2, respectively. Similar operation for

Junction B leads to

d++d–=lkfz(c++ c-) (3)

Y3(C- – c+) = Acf;Y2(d+ - d–) (4)

where M2 is the 13-field mode-matching matrix of Junction B, whose

size is of Nz by N3, where N3 is the number of modes considered in

guide 3. From Fig. 1, we know h+ = Ld– and d+ = Lb–, where L is

the diagonal transmission matrix of the sandwiched larger waveguide

with L~, ~ = exp ( —J’t%,~ 0 as its nth diagonal element. Here P2,~

is the propagation constant of the nth mode in guide 2. Substituting

these relations into (l)–(4), and eliminating b+, b-, d+, and d-, one

can obtain

Y1 (a+ – a–) = –YP(a+ +a–)+Yg(c–+ c+) (5)

Y3(C- – c+) = –Y~(a+ +a–) +Y, (c– + c+) (6)

where

YP = M: DIM1, Yq = M:D2A12, Y, = kf:DIM2 (7)

D, = YZ(I+L2)(L2 –1)--’, D2 = 2Y2L(L2 –l)-’. (8)

D1 and D2 are diagonal matrices with imaginary elements. There-

fore, the right-hand sides of (7) may be put into single summation

form. Matrices YP and Y, are symmetric. From (5) and (6), we can

derive the overall scattering matrix of the two cascaded junctions as

follows

Sll = 2[Y1 –y, +Y, (ys –y3)-’~:l-1yl –~ (9)

S.N = (Y$ –Y3)-lY; (I+ SI, ) (10)

S12 = ky1s;1Y3 (11)

S22 = (Y. – Y3)-”’[Y:S12 – 2Ys] – ~. (12)

It is noted that only two small matrices of sizes N1 by ~1 and N3

by Nz need to be inverted. Compared with the traditional GSMT

[4] for the problem shown in Fig. 1, we can see that this not only

reduces the number of matrix inversions (from inverting four matrices

to inverting two matrices), but also avoids the inversion of two large

matrices of size NZ by N~. In some cases when the ratios of areas of

guide 2 to that of guide 1 and guide 2 to guide 3 are very large [7],

[8], we should take AJz to be very large to get a convergent solution,

as will be discussed later.
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Fig. 1. Cascaded network of two waveguide junctions.
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Fig. 2. Side view of a multicavity waveguide filter and its equivalent
network.

III. APPLICATION TO WAVEGUIDE CAVITY FILTERS

As an illustrative example, this section considers the analysis of

waveguide cavity filters [8], [9]. The side view of a waveguide cavity

filter is shown in Fig. 2, which also gives its equivalent network. The

overall scattering matrix of these cascaded cavities St can be obtained

by using the GSMT [4]. Because the numbers of modes considered

in the iris waveguides, say N1 and IVs, are often small (less than

or much less than 20 for most cases), all matrices which are used to

obtain St are small. Therefore, St can be computed very rapidly. The

effect of the thicknesses of these coupling irises can be easily taken

into account with diagonal transmission matrices. After obtaining the

matrix St for the cascaded network Nt (see Fig. 2), the problem

reduces to that shown in Fig. 3, where the modaf amplitude vectors

of the filter input and output iris waveguide fields a+, a–, c+, and

c– are related to each other in terms of the matrix St as follows

(13)

Referring to Fig. 3 and applying the boundary condition that

tangential electric and magnetic fields must be continuous at the

interfaces of Junction 1 and Junction 2, we have [3], [7]

b++ b-=itli(a++a-) (14)

YI (a+ – ,( -b-)a–) =M~Y b+ (15)

1 I
Junction 1

Junction 2

Fig. 3. Reduced strnctnre of the waveguide cavity filter shown in Fig. 2.

140

120

I(SI

80
g

40

20

0
60 80 100 120 140 160 180

frequency (GHz)

Fig. 4. Transmission response of a rectangular iris coupled three-resonator
rectangular waveguide filter (a = 2.54 mm, b = 1.27 mm, a1 = al = 0.742
mm, bl = bl = 1.0937 mm, az = as = 0.4772 mm, bz = bs = 0.3603 mm,
11 = 13 = 1.9812 mm, 12 = 2.0768 mm, tl = tz= ts= t4= 0.05 mm).

d+ +d- =kfo(C++ C-) (16)

Y3(C- – c+) = M: YO(d– – d+) (17)

where the column vectors b+, b–, d+, and d– are the incident

and reflected modal amplitude vectors of the transverse electric field

components in guides I and II, respectively, which we different from

those used in the previous section. Substituting (13) into (14)-(17),

one may eliminate a– and c–. Because the incident and transmitted

waveguides (guides I and II in Fig. 4) may be much larger than the

iris waveguides, the sizes of vectors b and d should be very large.

In almost all practical cases, we only have one or two propagating

incident modes in each larger waveguide and only have interest in the

reflection and transmission coefficients of these propagating modes.

Accordingly, we can partition these vectors and matrices in (14)-(17)

as follows

where b:, b;, d;, and d; are vectors of dimension N1 for the

lower-order modes in which we are interested; b;, b;, b:, and d;

are for the higher-order modes. The subscripts i and o denote the

input waveguide I and output waveguide II, respectively (see Fig. 3).

Matrices Ikfi, M., Y,, and Y. are similarly partitioned.
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TABLE I
RELATIVECONVERGENCEOFTHENORMALIZEDSUSCEPTANCE
OFA RECTANGULAR-TO-RECTANGULARWAVEGUIDEJUNCTION

(a = 22.86 mm, b = 10.16 mm, f = 11 GHz)

Nz lCasell Case2/ Case 3

20 I 2.869 I 18.221 I 109.196

42 2.918 I 18.657 I 119.175

72 2.955 I 18.917 \ 120.137 ‘

272 I 19.518 I 125.344

342 I I 19.563 I 126.337
I I

506 I 126.968
600 I I 127.761

702 I 128.123

812 I 128.283
Case 1: al = 11.43mm, bl = 5.08mm:
Case 2: ~1 = 6.86mm,” bl-= 3.16mm;

Case 3: al = 3.86mm, bl = 1.66mm.

In most cases, IV1 = 1 or 2, and b: = O, d; = O. Furthermore,

we are only interested in b; and d;, that is to say, we can eliminate

b; and d; in the above equations. Then we can derive the scattering

matrix of the whole filter network for the first IV1 modes

Sy’1 = ikftl(I+ S:l +s;2Yi)Yu – I (20)

$“, = Moi[s;l + (1+ S;2)Y,]YU (21)

S:2 = Md[sj2 + (1+ s~l)Y”]Yw (22)

S;2 = M01(I+S:2 + sjlYu)Yw – I (23)

where

Yt = [Y3 + Y,w – (Y3 – YM)sj2]–l(Y3 – YM)S:l (24)

Y. = 2[Y1 + Y~ + (YL – Yl)(sil + sizyt)l-litftyti (25)

Yv = [Yl +Y~ – (YI –yL)SlI]–l(yI ‘y L)si2 (26)

Yw = 2[Y3 + Y~ + (YM – Y3)(S;2 + S;lYU)]-’M~IY.t (27)

with YL = M~YiMz and YM = M~YoMo. We only need to

invert four small matrices to obtain the overall scattering matrix.

Using the traditional GSMT [4], we must invert six matrices for the

same results. The partitioning technique also reduces the number of

matrix multiplications and computer memory space (some matrices

for the traditional GSMT may be very large).

IV. NUMERICAL RESULTS

We consider a double-plane step rectangular waveguide filter,

which has been studied by Papziner and Arndt [9]. Only the case of

air-filled waveguides and an incident Z’I31O mode are assumed. First,

we study the relative convergence of a double-plane step rectangular

waveguide junction for different sizes of the smaller waveguide.

Table I gives numerical results for the normalized susceptance of the

rectangular-to-rectangular waveguide junction E = j (1 – P1O)/ (1 +

P1O), where P1O is the reflection coefficient of the dofinant ~~10

mode. When the smaller waveguide is cut off, the normalized

susceptance is purely real. From Table I, we can see that when the

smaller waveguide becomes very small, the convergence is very slow,

and we should retain many more modes in the larger waveguide. For

the results presented in Table I, the number of modes in the smaller

waveguide is fixed at 20 (12 TE modes and 8 TIM modes).

TABLE II
COMPARISONOFCOMPUTATIONTIME OFOURIMPROVEDFORMUMTIONAND

THETRADITIONALGENERALIZEDSCATTERINGMATRIX TECHNIQUE[4]
(a = 22.86 mm, b = 10.16 mm, f = 11 GHz, dl = 15 mm, tl =

t2 = 0.1 mm, al = az = 3.86 mm, bl = bz = 1.66 rum)

=E%iiiiEN1 for iris guide N2 for guide I Our method GSMT

20 110 0.064 1.006

20 156 0.079 3.062

20 210 0.097 9.210

20 272 0.111 20.34

20 342 0.141

20 420 0.164
20 930 0.382
20 1640 0.622

As for the problem of the waveguide cavity filter, we should also

take many more modes of the larger wavegnide into account when

the coupling irises become very small. To compare our improved

modal expansion method with the traditional GSMT, we consider

a waveguide filter consisting of only one rectangular cavity. The

smaller the size of the iris waveguide, the larger will be the number

of modes in the larger waveguide (as shown in Table I). We may fix

the size of the iris waveguides and compare the computation time for

different modes considered in the larger waveguide. Table II shows

the comparison of computation times for a single-resonator rectan-

gular waveguide filter by our new formulation and the traditional

GSMT. The waveguide is standard WR90 (X-band) and the central

rectangular iris waveguide has 2.7690 of its cross-sectional area.

When the number AJ2 of modes considered in the larger waveguide

increases, the computation time of the traditional GSMT increases

dramatically since the number of multiplication operations involved in

LU factorization of a matrix is proportional to the cube of the size of

the matrix. For our improved method, however, the computation time

increase is less than linear with respect to lV2. Moreover, there is a

great reduction in computer memory requirements. For the traditional

GSMT, it was impossible with an HP series 735 workstation computer

to carry out the calculations when N2 was more than 300. Our

improved method easily treated more than 1000 modes.

Fig. 4 compares our results for the transmission response of a W-

band three-resonator rectangular waveguide filter with those given

in [9]; the agreement is good. In our computation, the sizes of all

matrices (equivalently, the number of modes considered in the iris

waveguides) to be inverted are fixed to be 10 x 10 (6 TE modes

and 4 TM modes).

V. CONCLUSION

This paper has provided a formally exact modal expansion method

for cascaded waveguide junctions. It has been demonstrated that the

improved scattering matrix formulation can reduce the number of ma-

trices to be inverted and avoids the inversion of some large matrices.

The method is computationally effective and can be implemented on

a personal computer. Application of the improved modal expansion

method to waveguide cavity filters is demonstrated.
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Comment on “Are Nonreciprocal Bi-Isotropic

Media Forbidden Indeed?”

Akhlesh Lakhtakia and Werner S. Weiglhofer

Abstract-In a recent paper,l Sihvola has cast doubt on our claim that
all Vi-isotropic media must be reciprocal. We show that Sihvola’s doubt
has no rational basis.

Consider the linear homogeneous bi-anisotropic medium whose

constitutive &(r) relations are given as

Q (?J t) =

(la)

(lb)

where ~c ( t) and ~ (t) are the dyadic susceptibility kernels, while

&(t) and ~(t) are t~~magnetoelectric kernels. Covariance in conjunc-— ——
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tion with the mathematical consistency of the Maxwell postulates

leads to the condition [1], [2]

Trace [Q(t) - ~(t)] = O.
.

(2)

A very important consequence of (2) is that all hi-isotropic media

must be reciprocal [2].

Doubt has been cast by Dr. Ari H. Sihvola [3] on this conclusion,

as well as on the validity of (2). We will show that hm doubt does

not have a rational basis. Following the publication of [2] (on which

Sihvola solely bases his critical remarks), further evidence on the

validity of (2) had been presented by us in several publications

[4]-[8], which had been made available to Sihvola well before he

finalized [3].

I. MATHEMATICAL BASIS FOR (2)

Consider a discrete electric charge moving with a constant velocity

under the influence of an electromagnetic field. This charge experi-

ences the usual Coulomb force in a co-moving frame of reference. In
the laboratory frame (E,t), that force is nothing but the usuaf Lorentz

force. which fact can be established from the Lorentz covariance of

the Maxwell postulates. As a result, the primitive fields-We ~(c, t)

and &’(c, t); therefore, the induction fields must be D(L, t) and

E(z, t). Consequently. these induction fields have to be expressed

as functional of the primitive fields in a material medium. For a

linear homogeneous medium, (la) and (lb) thus follow as the time-

dependent constitutive relations in modern electromagnetic theory.

In a sourceless region, the Faraday equation

a~(r, t)
vx&,t) .-T (3)

contains only the primitive fields and is therefore not affected by the

constitutive relations. The Ampere-Maxwell equation

(4)

contains the induction fields. When (1a) and (1 b) are substituted into

(4) and the result is compared with (3), a redundancy emerges. This

redundancy is removed by (2), which has covariance [1] as well as

uniqueness [4] proofs.

Equation (2) has also been extended to nonhomogeneous media [9].

Sihvola has not been able to prove that (2) is mathematically

incorrect indeed, he has not even suggested that is so. Instead, he

has chosen to present two media that can possibly refute (2). Let us

now show that his physical counter-arguments are unsustainable.

11. TELLEGEN MEDIUM

Many decades ago, Tellegen conceived manufacturing a nonrecip-

rocal hi-isotropic medium by randomly dispersing inclusions of a

special type in an appropriate host medium. Each inclusion would

be made of a glued pair of two parallel dipoles, one magnetic and

the other electric. The resulting medium would be isotropic: ~n (t) =

,i. (t)l,, i_(~) = x-~(t)~,, Q(t) = ~(t)J, and~(~)= ~(~)~w-here~
is the~dentity dyadic. More important, th;s com~osite medium would

have d(t) + ~ (t) = O and would thus violate (2), if it could be made!

No one has been able to make a sample of the Tellegen medium.

Elsewhere, it has been mathematically proved that even if such a
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