IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 12, DECEMBER 1995

An Improved Modal Expansion Method for Two Cascaded
Junctions and Its Application to Waveguide Filters

Zhongxiang Shen and Robert H. MacPhie

Abstract—An improved modal expansion method is described for the
scattering matrix of a cascaded network which consists of an enlargement
junction combined with a reduction junction. The new method can signif-
icantly reduce computation time and requirement of computer memory.
Application to iris coupled waveguide cavity filters is demonstrated.
Numerical results for a rectangular waveguide cavity filter are given.

1. INTRODUCTION

The problem of electromagnetic scattering at waveguide disconti-
nuities has been extensively studied for several decades. Of the many
methods developed for this problem, the most rigorous is the modal
expansion method [1]-[3]. In order to analyze multistep waveguide
discontinuities by the modal expansion method, the generalized
scattering matrix technique (GSMT) [4] is often employed to obtain
the overall scattering matrix of the whole circuit. Due to the fact that
the GSMT is computationally time-consuming, some improvements
have been presented. Omar and Schunemann [5] demonstrated that
the transmission matrix representation of waveguide discontinuities is
superior to the scattering matrix representation. However, as shown
by Mansour and MacPhie [6], the transmission matrix formulation
requires an equal number of modes to be retained in any of the
guides forming the discontinuities, which may result in incorrect
numerical solutions. An improved transmission matrix formulation
was then presented in {6], but it becomes inaccurate when two abrupt
discontinuities (one enlargement and the other reduction) are in close
proximity.

This paper presents an alternative, improved modal expansion
method for cascaded waveguide junctions. The basic idea is to
consider the two junctions at once by the modal expansion method
[1]1-[3], which directly yields the scattering matrix of the whole
cascaded network. This improved scattering matrix formulation is
formally exact and completely eliminates the numerical overflow
problem [5] from which the transmission matrix formulation suffers
and can avoid the inversion of two large matrices. Considerations of
the properties of the junctions at the incident and transmitted ports
of a practical filter lead to a matrix-partitioning technique to greatly
reduce computation time and memory space requirement. Numerical
tests show that the technique is very computationally effective and
stable.

II. IMPROVED MODAL EXPANSION METHOD

Fig. 1 shows the structure of the scattering problem considered in
this section; there are two waveguide junctions (one is enlargement
and the other is reduction). The length of the sandwiched larger
waveguide (guide 2 in Fig. 1) is assumed to be {. The traditional
approach is to separately analyze these two individual junctions (A
and B in Fig. 1) and then to obtain the overall scattering matrix of the
cascaded network by the GSMT [4]. Instead, one can consider these
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two junctions at once. As shown in Fig. 1, a* and a™ are the incident
and reflected modal amplitude column vectors in guide 1 at Junction
A, and similarly ¢ and ¢~ are the incident and reflected modal
amplitude vectors in guide 3 at Junction B, and b™, b, d*, and d~
are similarly defined in guide 2 for junctions A and B. Application
of the boundary conditions for tangential electric and magnetic fields
at the interface of Junction A yields [3], [7]

br+bT =Mi(at +a7) )

Yi(at —a ) =MiY (b —b") 2)

where Y';, for i = 1, 2, and 3, is the modal admittance matrix for the
ith waveguide. The superscript T' denotes the transpose operation and
M, is the E-field mode-matching matrix of Junction A [7], whose
size is of N2 by N1, where N; and No are the numbers of modes
considered in guide 1 and guide 2, respectively. Similar operation for
Junction B leads to

d¥ +d” = Ms(ct +¢7) 3)

Yi(c™ —ct) = MIY,(dT —d7) @)

where M, is the F-field mode-matching matrix of Junction B, whose
size is of N2 by Ns, where N3 is the number of modes considered in
guide 3. From Fig. 1, we know b* = Ld™ andd™ = Lb~, where L is
the diagonal transmission matrix of the sandwiched larger waveguide
with L., = exp (—jB2,n!) as its nth diagonal element. Here (2
is the propagation constant of the nth mode in guide 2. Substituting
these relations into (1)—(4), and eliminating b, =, d*, and 4™, one
can obtain

Yiat —a) ==Y, (aT+a7 )+ Y, (¢ +cT) 5)

Yi(c™ —ch) = —Y;(a++a—)+Ys(c_+c+) 6)
where

Y,=MID\M,Y, =M DM, Y,=MLD:M; (7)

Dy =Y I+ L)L -7, Dy =2Y,L(L* -D)™". (8

D; and Dy are diagonal matrices with imaginary elements. There-
fore, the right-hand sides of (7) may be put into single summation
form. Matrices Y, and Y, are symmetric. From (5) and (6), we can
derive the overall scattering matrix of the two cascaded junctions as
follows

S =2Y1 Y, +Y (Y. -Y3) V. ]7'Yi T (9

S =(Y,-Y3) 'YL (I+5u) (10)
S, =Y{'8,Y; (1)
S22 = (Y. —Ys) [V 812 —2Vs] - L (12)

It is noted that only two small matrices of sizes N1 by N; and N3
by N3 need to be inverted. Compared with the traditional GSMT
[4] for the problem shown in Fig. 1, we can see that this not only
reduces the number of matrix inversions (from inverting four matrices
to inverting two matrices), but also avoids the inversion of two large
matrices of size N, by N;. In some cases when the ratios of areas of
guide 2 to that of guide 1 and guide 2 to guide 3 are very large [7],
[8], we should take N> to be very large to get a convergent solution,
as will be discussed later.
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Fig. 1. - Cascaded network of two waveguide junctions.
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Fig. 2. Side view of a multicavity waveguide filter and its equivalent
network.

III. APPLICATION TO WAVEGUIDE CAVITY FILTERS

As an illustrative example, this section considers the analysis of
waveguide cavity filters [8], [9]. The side view of a waveguide cavity
filter is shown in Fig. 2, which also gives its equivalent network. The
overall scattering matrix of these cascaded cavities St can be obtained
by using the GSMT [4]. Because the numbers of modes considered
in the iris waveguides, say N1 and Nz, are often small (less than
or much less than 20 for most cases), all matrices which are used to
obtain S* are small. Therefore, S can be computed very rapidly. The
effect of the thicknesses of these coupling irises can be easily taken
into account with diagonal transmission matrices. After obtaining the
matrix St for the cascaded petwork N, (see Fig. 2), the problem
reduces to that shown in Fig. 3, where the modal amplitude vectors
of the filter input and output iris waveguide fields a*, a™, ¢*, and
¢~ are related to each other in terms of the matrix S* as follows

a | _ i S [at
c” S;l 520 ct
Referring to Fig. 3 and applying the boundary condition that

tangential eleciric and magnetic fields must be continuous at the
interfaces of Junction 1 and Junction 2, we have [3], [7]

b4 = Mi(at +4a7)

(13)

(14

Yi(am —a”) = MIY(bt —b7) (15)
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Fig. 3. Reduced structure of the waveguide cavity filter shown in Fig. 2.
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Fig. 4. Transmission response of a rectangular iris coupled three-resonator
rectangular waveguide filter (¢ = 2.54 mm, b = 1.27 mm, a1 = a4 = 0.742
mm, by = by = 1.0937 mm, a2 = a3 = 0.4772 mm, by = b3 = 0.3603 mm,
Iy = I3 = 1.9812 mm, I> = 2.0768 mm, t; = to = t3 = t4 = 0.05 mm).

dt+d =M,(ct+c7) (16)

Ys(c™ —c¢t) = MIY,(d™ - dF) a7
where the column vectors b*, b=, d*, and d~ are the incident
and reflected modal amplitude vectors of the transverse electric field
components in guides I and 11, respectively, which are different from
those used in the previous section. Substituting (13) into (14)—(17),
one may eliminate a~ and ¢~ . Because the incident and transmitted
waveguides (guides I and I in Fig. 4) may be much larger than the
iris waveguides, the sizes of vectors b and d should be very large.
In almost all practical cases, we only have one or two propagating
incident modes in each larger waveguide and only have interest in the
reflection and transmission coefficients of these propagating modes.
Accordingly, we can partition these vectors and matrices in (14)-(17)
as follows

pr1 b B dr
=i = o =[] o= [E] o
by b, df; d;

M; = [M“], M, = [MOI},Y,- - [Y“ 0 ]

M M, 0 Y
_ Yo 0
[ "

where b}, b7, df, and d; are vectors of dimension N, for the
lower-order modes in which we are interested; b}, bj,, b}, and dj,
are for the higher-order modes. The subscripts ¢ and o denote the
input waveguide I and output waveguide II, respectively (see Fig. 3).
Matrices M;, M,, Y, and Y, are similarly partitioned.
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TABLE 1
RELATIVE CONVERGENCE OF THE NORMALIZED SUSCEPTANCE
OF A RECTANGULAR-TO-RECTANGULAR WAVEGUIDE JUNCTION
(@ = 22.86 mm, b = 10.16 mm, f = 11 GHz)

N, | Casel | Case2 | Case 3
20 | 2.869 | 18.221 | 109.196
42 | 2.918 | 18.657 | 119.175
72 | 2.955 | 18.917 | 120.137 '
110 | 2.978 | 19.189 | 122.094
156 | 2.984 | 19.239 | 123.863
210 | 2.989 | 19.465 | 124.269
272 19.518 | 125.344
342 19.563 | 126.337
506 126.968
600 127.761
702 128.123
812 128.283

Case 1: a; = 11.43mm, by = 5.08mm;
Case 2: a, = 6.86mm, b, = 3.16mm;
Case 3: a; = 3.86mm, b, = 1.66mm.

In most cases, N; = 1 or 2, and b;f =0, d;’l' = (. Furthermore,
we are only interested in b;” and d;, that is to say, we can eliminate
b, and d;, in the above equations. Then we can derive the scattering
matrix of the whole filter network for the first V; modes

V=MuyI+8,+8.Y)Y,. -1 (20)
S5 = M, (S5, + (I +85)Y Y. 1)
511”2 = le[StIZ + (I+ Sil)Yu]Yw (22)
8% =M (I+85+85Y,)Y, ~T (23)
where
Y= [Ys+VYu—(Ys—Yu)Sh] " (Ya—Yum)Ss: (24

Y.=2¥ 1 +YL+ (Y —Y1)(S 4+ 8L, ' MAY. (25)

Y,=[Y1+Yr— (Y1 -Y)S,| (Y1 -Y)S,  (26)

Yo =2Ys+Yu+ (Y —Y3)(Shs+55Y.)] " MuYa 27)

with Y7, = MYY;M, and Yy s = MIY M, We only need to
invert four small matrices to obtain the overall scattering matrix.
Using the traditional GSMT [4], we must invert six matrices for the
same results. The partitioning technique also reduces the number of
matrix multiplications and computer memory space (some mattices
for the traditional GSMT may be very large).

IV. NUMERICAL RESULTS

We consider a double-plane step rectangular waveguide filter,
which has been studied by Papziner and Arndt [9]. Only the case of
air-filled waveguides and an incident 7°E1 mode are assumed. First,
we study the relative convergence of a double-plane step rectangular
waveguide junction for different sizes of the smaller waveguide.
Table I gives numerical results for the normalized susceptance of the
rectangular-to-rectangular waveguide junction B = j{1 — p10)/(1+
pio), where pio is the reflection coefficient of the dominant T E1o
mode. When the smaller waveguide is cut off, the normalized
susceptance is purely real. From Table I, we can see that when the
smaller waveguide becomes very small, the convergence is very slow,
and we should retain many more modes in the larger waveguide. For
the results presented in Table I, the number of modes in the smaller
waveguide is fixed at 20 (12 T'F modes and 8 T'M modes).
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TABLE II
COMPARISON OF COMPUTATION TIME OF OUR IMPROVED FORMULATION AND
THE TRADITIONAL GENERALIZED SCATTERING MATRIX TECHNIQUE [4]
(@ = 22.86 mm, b = 10.16 mm, f = 11 GHz, d1 = 15 mm, {1 =
t2 = 0.1 mm, a1 = as = 3.86 mm, by = bs = 1.66 mm)

Number of modes considered | Computation time (seconds)
N, for iris guide | N, for guide I | Our method | GSMT
20 20 0.036 0.060
20 42 0.042 0.138
20 72 0.057 0.379
20 110 0.064 1.006
20 156 0.079 3.062
20 210 0.097 9.210
20 272 0.111 20.34
20 342 0.141
20 420 0.164
20 930 0.382
20 1640 0.622

As for the problem of the waveguide cavity filter, we should also
take many more modes of the larger waveguide into account when
the coupling irises become very small. To compare our improved
modal expansion method with the traditional GSMT, we consider
a waveguide filter consisting of only one rectangular cavity. The
smaller the size of the iris waveguide, the larger will be the number
of modes in the larger waveguide (as shown in Table I). We may fix
the size of the iris waveguides and compare the computation time for
different modes considered in the larger waveguide. Table II shows
the comparison of computation times for a single-resonator rectan-
gular waveguide filter by our new formulation and the traditional
GSMT. The waveguide is standard WR90 (X-band) and the central
rectangular iris waveguide has 2.76% of its cross-sectional area.
When the number N> of modes considered in the larger waveguide
increases, the computation time of the traditional GSMT increases
dramatically since the number of multiplication operations involved in
LU factorization of a matrix is proportional to the cube of the size of
the matrix. For our improved method, however, the computation time
increase is less than linear with respect to N2. Moreover, there is a
great reduction in computer memory requirements. For the traditional
GSMT, it was impossible with an HP series 735 workstation computer
to carry out the calculations when No was more than 300. Our
improved method easily treated more than 1000 modes.

Fig. 4 compares our results for the transmission response of a W-
band three-resonator rectangular waveguide filter with those given
in [9]; the agreement is good. In our computation, the sizes of all
matrices (equivalently, the number of modes considered in the iris
waveguides) to be inverted are fixed to be 10 x 10 (6 TE modes
and 4 TM modes).

V. CONCLUSION

This paper has provided a formally exact modal expansion method
for cascaded waveguide junctions. It has been demonstrated that the
improved scattering matrix formulation can reduce the number of ma-
trices to be inverted and avoids the inversion of some large matrices.
The method is computationally effective and can be implemented on
a personal computer. Application of the improved modal expansion
method to waveguide cavity filters is demonstrated.
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Comment on “Are Nonreciprocal Bi-Isotropic
Media Forbidden Indeed?”’

Akhlesh Lakhtakia and Werner S. Weiglhofer

Abstract—In a recent paper,! Sihvola has cast doubt on our claim that
all bi-isotropic media must be reciprocal. We show that Sihvola’s doubt
has no rational basis.

Consider the linear homogeneous bi-anisotropic medium whose
constitutive &(7) relations are given as

D,(r.t)=
fBet)+ [ oo (re Bt =)+ &r) o Bt - )]s
- (1a)
H, (r,t)=
SOB(r,t)—i- / |:B(T)0E(T.f—7‘)——1—\~( (T)‘B(T,t—T):ldT
Beo+ [ |ine ke ¥ (e Bl
(1b)

where x (t) and Y (¢) are the dyadic susceptibility kernels, while

&(t) and é (t)are the magnetoelectric kernels. Covariance in conjunc-
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tion with the mathematical consistency of the Maxwell postulates
leads to the condition [1], [2]

Trace [g(t) - é(t)] =0. )}

A very important consequence of (2) is that all bi-isotropic media
must be reciprocal [2].

Doubt has been cast by Dr. Ari H. Sihvola [3] on this conclusion,
as well as on the validity of (2). We will show that his doubt does
not have a rational basis. Following the publication of [2] (on which
Sihvola solely bases his critical remarks), further evidence on the
validity of (2) had been presented by us in several publications
[4]-[8], which had been made available to Sihvola well before he
finalized [3].

I. MATHEMATICAL BASIS FOR (2)

Consider a discrete electric charge moving with a constant velocity
under the influence of an electromagnetic field. This charge experi-
ences the usual Coulomb force in a co-moving frame of reference. In
the laboratory frame (r,t), that force is nothing but the usual Lorentz
force. which fact can be established from the Lorentz covariance of
the Maxwell postulates. As a result, the primitive fields are E(Lt)
and B (r,t); therefore, the induction fields must be _12 (r,t) and
Hir, t). Consequently. these induction fields have to be expressed
as functionals of the primitive fields in a material medium. For a
linear homogeneous medium, (la) and (1b) thus follow as the time-
dependent constitutive relations in modern electromagnetic theory.

In a sourceless region, the Faraday equation

_ 9Bz, t)

ot )

Vx B(r,t) =
contains only the primitive fields and is therefore not affected by the
constitutive relations. The Ampere-Maxwell equation

dD(r. )

“)
contains the induction fields. When (1a) and (1b) are substituted into
(4) and the result is compared with (3), a redundancy emerges. This
redundancy is removed by (2), which has covariance [1] as well as
uniqueness [4] proofs.

Equation (2) has also been extended to nonhomogeneous media [9].

Sihvola has not been able to prove that (2) is mathematically
incorrect; indeed, he has not even suggested that is so. Instead, he
has chosen to present two media that can possibly refute (2). Let us
now show that his physical counter-arguments are unsustainable.

II. TELLEGEN MEDIUM

Many decades ago, Tellegen conceived manufacturing a nonrecip-
rocal bi-isotropic medium by randomly dispersing inclusions of a
special type in an appropriate host medium. Each inclusion would
be made of a glued pair of two parallel dipoles, one magnetic and
the other electric. The resulting medium would be isotropic: XO (t) =

Xe(t)L, X (t) = \m(t)L, a(t) = ()L, and B(t) = [§(t)L where L
is the ideﬁﬁt){ dyadic. More important, this composite medium would
have &(t)+ 3(t) = 0 and would thus violate (2), if it could be made!

No one has been able to make a sample of the Tellegen medium.

Elsewhere, it has been mathematically proved that even if such a

0018-9480/95504.00 © 1995 IEEE



